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We propose a numerical method for modeling multimaterial flows where the
domain is decomposed into separate Eulerian and Lagrangian subdomains. That is,
the equations are written in Eulerian form in one subdomain and in Lagrangian form
in the other subdomain. This is of interest, for example, when considering the effect
of underwater explosions on the hull of a ship or the impact of a low speed projectile
on a soft explosive target. On the one hand, high-speed fluid flows are traditionally
modeled by applying shock-capturing schemes to the compressible Euler equations
to avoid problems associated with tangling of a Lagrangian mesh. On the other
hand, solid dynamics calculations are traditionally carried out using Lagrangian
numerical methods to avoid problems associated with numerical smearing in Eulerian
calculations. We use the ghost fluid method to create accurate discretizations across
the Eulerian/Lagrangian interface. The numerical method is presented in both one
and two spatial dimensions; three-dimensional extensions (to the interface coupling
method) are straightforward.c 2002 Eisevier Science

1. INTRODUCTION

Solid/fluid interaction problems are still rather difficult to solve with modern compute
tional methods. In general, there are three classical approaches to such problems: trea
the solid and the fluid with Eulerian numerical methods, treat the fluid with an Euleri
numerical method and the solid with a Lagrangian numerical method, or treat both the s
and the fluid with Lagrangian numerical methods.
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Certain fluids, e.g., high-speed gas flows with strong shocks and large deformatic
are very difficult to solve for with Lagrangian numerical methods. Lagrangian numeric
methods use artificial viscosity to smear out numerical shock profiles over a numbel
zones to reduce post-shock oscillations or ringing. Thus one has to choose the form
the artificial viscosity, which can be both problem and material dependent. In additi
Lagrangian numerical methods have difficulties treating flows with large deformatior
since this causes large deformations of the mesh and subsequent large numerical errol
can only be removed with complicated remeshing and/or mesh generation procedures
tend to be low-order accurate. In particular, flows with vorticity cause the mesh to tangle
sometimes invert, in which case the calculation needs to be stopped. Eulerian nume
methods intrinsically avoid these mesh associated problems, since they use a static
mesh. Furthermore, Eulerian shock-capturing schemes capture shocks in a straightfor
way using conservation and robust limiters, eliminating the need for problem-depend
artificial viscosity formulations altogether. This allows shocks to be modeled with as few
one grid cell (without oscillations), whereas Lagrangian numerical methods usually su
from some amount of post-shock oscillations until the shock is spread out over about
grid cells; see, e.g., [3, 4].

While Eulerian numerical methods are superior for high-speed gas flows, they n
perform poorly for many solid dynamics calculations. Since Eulerian numerical methc
capturethe properties of a material, they are not very accurate or robust when track
material properties that are important for modeling time history variables. Because of tl
Eulerian numerical methods do not give accurate results when dealing with material
sponse to loading and damage. In contrast, Lagrangian numerical methods are extre
accurate and well tested in this area.

At this point, it is obvious that it is preferable to use Eulerian numerical methods on t
fluid and Lagrangian numerical methods on the solid. It remains to address exactly |
these two calculations can be coupled together to model solid/fluid interactions. There
essentially two techniques for treating this solid/fluid interface. One technique is to sm
out the nature of the numerical approximations using a Lagrangian numerical method in
solid and an Eulerian numerical method in the gas with some “mushy” region in betwe
where the grid moves with an intermediate speed in between that of the Lagrangian mest
the stationary Eulerian mesh. That is, the grid speed is smoothly varying in between tf
two regions. This is essentially the idea behind the arbitrary Lagrangian—Eulerian (AL
numerical algorithm; see, e.g., [3]. The problem here is that these variable-speed me
are not well studied and the numerical algorithms employed here tend to be low-or
accurate and sometimes suspect. The other technique for treating the solid/fluid inter
is to keep the mesh representation sharp so that the Eulerian and Lagrangian meshes
direct contact. The problem with this method is that the Lagrangian mesh moves, cau
Eulerian mesh points to appear and disappear. In addition, the Eulerian cells tend to |
irregular shapes, sometimes referred to as cut cells. These cut cells can lead to nume
errors and stiff time-step restrictions; see, e.g., [3] and the references therein, specific
[13], [19], and [18] which discuss the PISCES, CEL, and PELE codes respectively.

We prefer the second approach for treatment of the solid/fluid interface. That is,
keep the Lagrangian and Eulerian meshes in direct contact to avoid special methods ft
arbitrary speed mesh. In our approach, problems with cut cells are avoided by the us
ghost cells for the Eulerian mesh. These ghost cells are covered (or partially covered) by
Lagrangian mesh, but they are used in the Eulerian finite difference scheme to circum:
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small time step restrictions. These ghost cells are defined in a way consistent with
ghost fluid method [11] so that the interface boundary conditions or jump conditions
properly captured. This method also avoids the blending problems associated with cove
and uncovering of grid points since covered real grid nodes are treated as ghost nodes
uncovered ghost nodes are treated as real grid nodes. Our approach is novel in the
numerical treatment of the solid/gas interface does not compromise the solution technic
for the solid or the fluid at the interface. That is, once the ghost cell values are specifi
a standard Eulerian code can be used to advance the fluid (and its ghost nodes) in 1
Likewise, once the Lagrangian boundary conditions are specified, a standard Lagran
code can be used to advance the Lagrangian mesh in time.

In this paper, our focus is on the interaction between materials with a compressi
nature. If one is interested, for example, in treating the solid as a rigid body or the flt
as incompressible, then nontrivial modifications may be needed for both efficiency ¢
accuracy. Moreover, in these and other cases, one should also consult the available literz
For example, [24] couples an elastic solid to a Stokes fluid (see [16] as well).

Sections 2 and 3 discuss the Euler and Lagrange equations respectively, and the r
method for coupling them together is discussed in Section 4. Section 5 shows how
new method can be used on stiff fluid/fluid interfaces to significantly improve the resu
obtained with the ghost fluid method in [11]. Finally, Section 6 presents the results obtair
from the numerical experiments in one and two spatial dimensions.

2. EULER EQUATIONS

The Euler equations for two-dimensional compressible flow are

0 pu oV
u 2 u
PP+ PR+ 5 ] =0 (1)
pv puUv pv-+p
E/, (E+pu/ (E+pr

wheret is time,x andy are the spatial dimensionsis the density andv are the velocities,
E is the total energy per unit volume, apds the pressure. The total energy is the sum o
the internal energy and the kinetic energy,

2 2
E = pe+ M’ (2)
2
wheree is the internal energy per unit mass. The pressure can be written as a func
of density and internal energp, = p(p, €). For the sake of simplicity only a gamma law
gas,p = (y — D pe, is considered in this paper. The one-dimensional Euler equations ¢
obtained by setting = 0. These equations are discretized using third-order-accurate EN
methods. See [12, 23] for more details.
On the Eulerian mesh, the convective time step restriction is given by

lul+c
At(T) <1 3)
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in one spatial dimension and by

C C
At(|u|+ g Ll )51 4)
AX Ay

in two spatial dimensions where= ,/y p/p is the speed of sound. Note that is chosen
so that Eq. (3) (or (4)) is valid at every grid node of the Eulerian mesh.

3. LAGRANGE EQUATIONS

The Lagrange equations are written in nonconservative form with position, veloci
and internal energy as the independent variables. Since the equations are quite differe
one, two, and three spatial dimensions we address the one- and two-dimensional eque
separately throughout this paper. Our two-dimensional numerical method is essentially
method proposed in [6, 8, 9] with only minor modifications. In [6], the authors constructet
Lagrangian numerical method that can treat arbitrary forces in a simple straightforward fe
ion. In [8], the authors showed how subzonal pressures can be used to avoid mesh tanc
And in [9], the authors presented an edge-centered artificial viscosity. Our one-dimensic
numerical method is quite standard and can be seen as a straightforward simplificatio
the two-dimensional numerical method from [6, 8, 9] to a single spatial dimension. Thr
dimensional Lagrangian methods are not discussed this paper, but the interested rea
referred to [7], which is a three-dimensional extension of the method proposed in [6, 8,
The interested reader is also referred to [17] and [10].

3.1. One Spatial Dimension

In one spatial dimension the independent variablesxarg ande. Both x andu are
defined at the grid nodes whikeis defined at the cell centers located midway betwee
the grid nodes. Each cell or zone is split into two subzones based on the midpoint of e
cell. To initialize the calculation, the mass of each zawé, is determined, and then the
subzonal massenry?, are defined as half the zonal mass. The nodal mdssjs defined
as the sum of the neighboring subzonal masses. The nodal, zonal, and subzonal mas:t
remain fixed throughout the calculation.

Each time step, the location of each grid node is updated according to

N+l _ yn

a0 ®)

whereAt is the size of the time step. The velocity at each node is updated using

untl _ gyn En

At MP )

whereF" is the net force on the grid node. And the internal energy in each zone is upda
with

en+1_en H"

At M7 (7)
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whereH" is the heating rate of the zone. One can apply either force or velocity bound:
conditions to the grid nodes on the boundary. Velocity boundary conditions are enfort
by simply setting the velocity of a boundary node to the desired boundary velocity inste
of solving Eq. (6). Force boundary conditions are applied by adding the boundary force
the net nodal forc&" in Eq. (6).

The density of each subzone is determined by dividing the subzonal mass by the subz
length. Then the subzonal pressure is defined based on the subzonal density and the
internal energy. For example, in the case of a gamma law gas(y — 1)pe. In one
spatial dimension, each zone has two subzonal pressures that are identical to each «
implying that only a zonal pressure need be defined. However, in multiple dimensions,
subzonal pressures are not equal and help to avoid mesh tangling [8]. For this reasor
use subzonal pressures in the one-dimensional exposition. Each subzonal pressure prc
a contribution to the net force on the adjacent grid node as well as a contribution to
heating rate of the zone that contains it. If the adjacent node is to the left of the subzone
contribution to the nodal force is p and the contribution to the zone heating ratgis
whereu is the velocity of the grid node. Otherwise, if the adjacent node is to the right of tt
subzone, the contribution to the nodal forcepigind the contribution to the zone heating
rate is— pu.

An artificial viscosity,Q, is computed in each zone and is used to augment the net noc
force of the two adjacent grid nodes as well as the heating rate of the zone. The contributic
the net nodal force of the node on the lefti®, while the contribution to the net nodal force
of the node on the right i. The contribution to the zone heating rateQs; — Qu; 1,
whereu; andu;,, are the velocities of the left and right nodes respectively. Artificia
viscosity is only applied when the zone is under compressio §oset identifically to
zero if Au = uj; — u; > 0. Otherwise.

Q = (1 — ¥)(Cipc| AUl + Cop(AU)D), (8)

wherep is the density of the zone determined by dividing the zonal mass by the lenc
of the zoneg is the zonal sound speed determined using the density and internal ene
of the zoneg; andc, are constants used to set the magnitude of the linear and quadre
components of the artificial viscosity respectively, afhds used to smoothly switch the
artificial viscosity on and offyr is defined as

-4t
w:max(o,min(r ;r ,2r‘,2r+,1>), 9)

wherer — = u; /ux andrt = uf /ux. The spatial derivative of the velocityy, in each zone

is defined as\u over the length of the zona; andu; are the derivatives in the zone to the
left and to the right of the current zone respectively. If either the zone to the left or the zc
to the right is undefined because the current zone lies on a boundary, then the correspor
value ofr is set identically equal to 1.

Material strength is applied by putting springs in each zone to connect the neighbor
nodes. Each zone is assigned a rest lengthand restoring forces occur when a zone’s
length, L, is not equal to its rest length. The restoring force is simphy —k(LL0 -1
wherek > 0 is some measure of the stiffness of the material. This restoring force mak
contributions of—Sto the net nodal force of the node on the ISto the net nodal force
of the node on the right, anfly — Sy 1 to the zone heating rate.
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For the one-dimensional Lagrangian mesh,
At (E) <1 (10)

is enforced in every zone whefe= /y p/p is the effective speed of sound using the
effective pressur® = p + Q + |S|, which includes the effects of artificial viscosity and
material strength. Note that the magnitudeSois used asS can be negative, unlik®,
which is always positive.

3.2. Two Spatial Dimensions

In two spatial dimensions the independent variablesXate (x, y), V = (u, v), and
e. Both X andV are defined at the grid nodes which are connected in same fashion
an Eulerian grid producing quadrilateral zones. Each quadrilateral zone is split into f
subzones by connecting the midpoints of opposite edges of theeisraefined at the zone
center, which is located at the intersection of the four subzones and can be compute
averaging the four nodes that make up the quadrilateral zone. To initialize the calculat
the mass of each zonk|?, is determined, and then the subzonal massésare defined
as one-fourth the zonal mass. The nodal m&&8, is defined as the sum of the (at most
four) neighboring subzonal masses. Once again, the nodal, zonal, and subzonal m:
all remain fixed throughout the calculation. The independent variables are updated \
Egs. (5), (6), and (7) replacing u, andF" with X, V, andF respectively. Either force or
velocity boundary conditions are applied to the grid nodes on the boundary.

The density of each subzone is determined by dividing the subzonal mass by the subz
area. Then the subzonal pressure is defined based on the subzonal density and the
internal energy. Exactly one of the four corners of each subzone corresponds to a grid n
The two subzonal edges connected to this grid node are used to calculate the contribi
of the subzonal pressure to the net nodal force at this node. For each of these two e
this is done by multiplying the subzonal pressure by the length of the edge and by the
vector perpendicular to the edge. The dot product of this force with the velocity of the g
node gives the contribution of the subzonal pressure to the heating rate of the zone.

In each zone, four separate artificial viscosities are computed, i.e., one along each €
For a given edge with nodes designated by subscriptedi + 1, AV =V, 1 — V; and
Ny = AV/|AV] define the velocity jump and the unit vector in the direction of the velocit)
jump respectively. Lel s designate the length of the subzonal edge that connects t
midpoint of the zone edge to the center of the zone.Ngtesignate the unit normal
to this subzonal edge that points from the node designatadtbyhe node designated
by i + 1. The scalar artificial viscosityQ, is multiplied by Ls(Ns - Ny)Ny to obtain the
vector form of the artificial viscosit®. Artificial viscosity is only applied when the zone
is under compression, € is set identically to zero iNs - Ny > 0. Otherwise—Q is the
contribution to the net nodal force at the node designatedandQ is the contribution to
the net nodal force at the node designated byl. The contribution to the zone heating
rate isQ - V; — Q- Vi.1.

The scalar artificial viscosityQ, is computed using Eq. (8), replacigs with AV and
defining (AV)? as AV - AV. The density in Eq. (8) is defined &8p; pi+1)/(pi + pi+1),
where the nodal densitieg, and p; 1, are calculated by dividing the nodal mass by the
nodal area, defining the nodal area as the sum of the areas of all the adjacent subz
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The sound speed in Eq. (8) is defined as nging. 1), where the nodal sound speeds,
andc; 1, are computed using the nodal density and the nodal internal energy. The nc
internal energy is calculated by dividing the total internal energy (not per unit mass)
the node by the nodal mass. The total internal energy of a node is calculated by sumn
the total internal energy of all the neighboring subzones, i.e., sumptpgrom each
subzone.

¥ is defined using Eq. (9), where = D-V/DV andr™ = D*tV/DV. DV is defined
asAV - Ny /AX -Nx = |AV|/|AX]|,whereAX = Xj ;1 — XjandNx = AX/|AX|-D~V
andD"V aredefinedaa~V - Ny /A™X - Nx andA*V - Ny /ATX - Ny, respectively, with
A7V =V —Vi_1, ATV =V — Vi, A X =Xj — Xj_1, andATX = Xj 1o — Xj11.
Once again, if information is missing, then the corresponding valueiotet identically
equal to 1.

Material strength is applied using forces based on springs. While this trivial mater
strength model lacks several desirable features (e.g., it is anisotropic), it is more t
adequate for our purposes. That is, our goal here will be to demonstrate that the inter
coupling method can correctly deal with a discontinuous pressure profile across the inter
as shown in Fig. 11 of example 2. Every edge of every zone is assigned a rest length,
and every zone is assigned a measure of stiffiessp. A zone admits a restoring force
of S= —k(LL0 — 1)Nx when the current edge length, is not equal to its rest length. For
each zone adjacent to a particular edge, the restoring force makes contributiefss of
to the net nodal force of the node 4t, S to the net nodal force of the node 4.,
andS-V; — S- V,,; to the heating rate of the zone. The straightforward adaption of th
material strength model into the numerical algorithm illustrates the power of the gene
force algorithm proposed in [6], which allows one to construct a compatible numeric
algorithm for any set of forces even if they originate only in discrete form.

Equation (10) is used to estimate the time step restriction in two spatial dimensic
as well, although some of the terms are defined differently than they are in one spe
dimension. The length of a zonk, is defined as the minimum of all the edge lengths anc
the two line segments that connect the midpoints of the opposite edges of the zone. W
defining€, the densityp is defined as the minimum of the four subzonal densities, and tt
pressurep is defined as the maximum of the four subzonal pressures. A scalar artific
viscosity is defined on each zone edge using the two-dimensional equivalent of Eq.
and thenQ is defined as the maximum of the four scalar artificial viscosities in the zon
Finally, a scalar material strength is determined by dividing the magnitude of the mate
strength on each zone edge by the length of the line segment that connects the midpoi
that edge to the cell center. Thgg is defined as the maximum of the four scalar materia
strengths in a zone.

4. TREATING THE INTERFACE

Boundary conditions need to be imposed on both the Eulerian and Lagrangian gr
Standard boundary conditions can be applied everywhere except at the internal boun
where the Lagrangian grid partially overlaps the Eulerian grid. These internal bound
conditions are the main focus of this paper. First the interface itself needs to be defir
and since the Lagrangian grid nodes move at the local material velocity, these nodes
be used to determine the position of the interface. In one spatial dimension, the interf
is simply defined as the single Lagrangian boundary node. In two spatial dimension:
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piecewise linear interface is defined by the Lagrangian mesh lines that connect the node
the boundary. This interface divides the Eulerian mesh into separate regions, i.e., are
populated by real grid nodes and a region populated by ghost nodes. Interface boun
conditions for the Eulerian mesh are imposed by defining the conserved variables,

mass, momentum, and energy, in the ghost nodes. Interface boundary conditions fol
Lagrangian mesh are imposed by either specifying the velocity of the grid nodes on
Lagrangian boundary or specifying the force applied to that boundary.

Since the interface moves with the local material velocity, it can be treated as a con
discontinuity for the Eulerian calculation. Then the Rankine—Hugoniot jump conditiol
imply that both the pressure and the normal velodity,= V - N, are continuous across
the interface while both the entropy and the tangential velocities are completely uncouy
across the interface [11]. The interface values of the uncoupled variables can be capt
by extrapolating these variables across the interface into the ghost cells. The contint
or coupled variables can be determined using the values from both the Eulerian anc
Lagrangian mesh.

The interface normal velocity can be determined by applying any number of interpolat
techniques to the Eulerian and Lagrangian mesh values. However, one should be ca
to define the interface normal velocity in a way that is consistent with the material in t
Lagrangian mesh. That is, perturbations to the velocity of the Lagrangian grid nodes
provide enormous stress due to resistive forces such as material strength. For this reas
determine an accurate (and Lagrangian mesh consistent) value of the normal velocity &
interface, only the Lagrangian mesh is used to determine the interface velocity, simila
[13, 18, 19]. However, both calculations use this interface normal velocity souhhtf 0
is enforced. The Lagrangian mesh simply uses the computed velocities of its bounc
nodes, while the Eulerian calculation captures this interface normal velocity by assign
each ghost node the interface normal velocity of the nearest point on the interface.

Since the interface normal velocity is defined as the velocity of the nodes on t
Lagrangian mesh boundary with no contribution from the Eulerian mesh, velocity bound
conditions cannot be enforced on the Lagrangian mesh at the interface. Instead, force bc
ary conditions are applied by interpolating the Eulerian grid pressure to this Lagrang
interface. In this way, the interface pressure is determined using only the Eulerian ¢
values, ignoring contributions from the Lagrangian mesh as in [13, 18, 19]. However, b
calculations use this interface pressure so thhtf 0 is enforced. The interface pressure is
captured by the Eulerian calculation by extrapolating the pressure across the interface
the ghost cells in a manner similar to the treatment of entropy and tangential velocity. Tl
the interface pressure can be interpolated from the Eulerian grid to apply force bounc
conditions to the Lagrangian calculation.

Note that [19] suggests that it might be better to use some average of the Lagrangiar
Eulerian grid values when determining the pressure at the interface. Actually, for Lagranc
calculations with artificial viscosity and material strength, the jump condition implies th
the net stress in the normal direction, not just the pressure, is continuous. Therefore,
averaging procedure should take place between the pressure in the gas and the n
component of the net stress in the normal direction in the solid. However, this can
dangerous, for example, when the Lagrangian material is in tension since near zer
negative stress might be calculated at the interface. While Lagrangian methods can be |
robust under tension, Eulerian methods can suffer a number of problems when treating
zero or negative pressures associated with rarefied or cavitated fluids.
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4.1. One Spatial Dimension

The one-dimensional interface is defined by the location of the Lagrangian bound
nodes that are adjacent to grid nodes of the Eulerian mesh. This interface location is
to construct a signed distance function in order to apply level set methods [20] near
interface. The level set function is defined at every Eulerian grid nodegwith0 for real
grid nodes an@ > 0O for ghost nodes. For each Lagrangian interface ngde,defined
analytically asp = £(x — Xo), Wherex, is the location of the node. The+” sign is used
if the Lagrangian mesh lies to the right and the''sign is used if the Lagrangian mesh lies
to the left. Since this is done for every Lagrangian interface ngde,multiply defined.

At each Eulerian grid node, a single valuegofs chosen from the possible candidates by
choosing the candidate with the minimum magnitude.

Before defining values in the Eulerian ghost nodes, a check is performed to see if eno
ghost nodes are present. That is, since the Lagrangian mesh is moving, one needs to e
that there is adequate overlap between the two meshes. This is done by examining the v
of ¢ on the computational boundaries of the Eulerian mesh. If the computational bound
is an Eulerian ghost node, then the valuepsafives the distance to the interface and car
be used to estimate the number of ghost nodes that exist between the interface ant
computational boundary. Then the size of the Eulerian mesh can be increased if there
not enough ghost nodes to successfully apply the numerical method.

The Eulerian ghost nodes are defined by first extrapol&angl p using the fast extension
procedure in[2] (based on the fast marching method; see, e.g., [21]), which extends varia
to be constant in the normal direction to first-order accuracy. Thateach ghost node is
assigned the value af at the nearest Lagrangian boundary node that lies on the interfa
between the Eulerian and Lagrangian grids. O8cp, andu are determined at each ghost
node, the conserved variables are reassembled.

Force boundary conditions are applied to the Lagrangian interface using the pressure
the Eulerian grid. First, the pressure at the interface is determined using linear interpola
form the Eulerian mesh. Note that this linear interpolation requires valid pressure value
both the real and the ghost nodes. Therefore, the pressure extension step (above) ne
be carried out before this linear interpolation step. This Eulerian interface pressure mak
contribution of+ p to the net force on the Lagrangian boundary node depending on whett
the Lagrangian mesh lies to the right or to the left of the interface respectively.

With boundary conditions specified on both the Eulerian and Lagrangian mesh, both
be advanced one Euler step in time. Note that both the Eulerian real grid nodes and a |
of Eulerian ghost nodes are advanced in time. These ghost nodes are advanced in tin
that they have valid values of the conserved variables in case they are uncovered by
Lagrangian mesh, i.e., in case they become real grid nodes at the end of the time step

4.2. Two Spatial Dimensions

The two-dimensional interface is defined by the line segments of the Lagrangian m:
boundary that are adjacent to grid nodes of the Eulerian mesh. This interface is use
construct a signed distance function defined at every Eulerian grid node witt for real
grid nodes an@ > 0 for ghost nodes. For each Eulerian grid node, the distance to ea
line segment on the Lagrangian mesh boundary is calculated, and the minimum of tt
distances is designated as the magnitudg. of
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The sign ofp is calculated using the closed polygon defined by connecting the Lagrang
interface to the computational boundary of the Eulerian mesh adjacent to the Eulerian g
nodes. The line segments of this polygon are swept through clockwise (or counterclockw
to calculate the angle made between the line segment connecting the Eulerian grid no
the first polygonal endpoint of the line segment and the line segment connecting the Eule
grid node to the second polygonal endpoint of the line segment. If these angles sm tc
(or —27) then the Eulerian grid node is inside the polygon; otherwise these angles sun
zero and the Eulerian grid node is outside the polygon. The nodes outside the polygor
real grid nodes witlp < 0, while the nodes inside the polygon are ghost nodesdgvithO.

If there is more than one polygon, then this procedure can be used to determine whe
a grid node lies within any of the polygons, in which case it is a ghost nodegwithD.
Points that do not lie in any of the polygons are the real grid nodesgwith0.

This method for constructing can be optimized by identifying the grid points near the
interface and defining only at those points. Then th@(N log N) fast marching method
[21] can be used to defireelsewhere. Points near the interface can be identified by findir
the Cartesian grid intersections of each line segment of the polygonal boundary of
Lagrangian mesh. The complexity of finding these Cartesian grid intersections scales
the number of grid points on the boundary of the Lagrangian mesh and is independer
the size of the Eulerian mesh since that mesh is Cartesian.

Once againg is examined on the computational boundaries of the Eulerian mesh
ensure that enough ghost nodes are present, and the size of the Eulerian mesh is incr
when necessary.

The Eulerian ghost nodes are defined by first extrapolading, andV using the fast
extension procedure in [2]. Then the closest point on the Lagrangian interface is determ
by looping through all the line segments that make up this interface. If the closest pc
happens to be on the end of a linear segment, i.e., a Lagrangian grid node, then that vel
can be designated the closest interface velocity. Otherwise, the closest point is on an
connecting two Lagrangian grid nodes, and the closest interface velocity is determined u
linear interpolation between those two nodes. Designating the closest interface velocit
V, and the extrapolated velocity My, the basis free projection method from [11] is used
to combine the normal component of the interface velocity with the tangential compon
of the extrapolated velocity, resulting in a ghost cell velocity of

V= (VI : N) N + Next — (Vext' N) N, (11)

where the unit normal vector is defined locally at the ghost node as

V¢

= Vol (12)

and the derivatives are computed with central differencing. In the rare case that the den
nator of Eq. (12) isidentically zero, the derivatives are computed with one-sided differenc
instead of central differencing to obtain a nonzero denominator. SngeandV have been
determined at each ghost node, the conserved variables are reassembled.

Once the Eulerian ghost nodes have valid values for the extrapolated pressure, f
boundary conditions can be determined at the Lagrangian interface. The midpoint of €
linear interface segment is defined as a control point, and bilinear interpolation is use
determine the Eulerian mesh pressure at each of these control points. Then this pre:
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is multiplied by both the length and the inward pointing normal of the line segment
determine the magnitude and direction of the Eulerian pressure force on this segm
Finally, half of this Eulerian pressure force is added to each of the two nodes that make
this segment.

With boundary conditions specified on both the Eulerian and Lagrangian mesh, both
be advanced one Euler step in time. Once again, note that both the Eulerian real grid n
and a band of Eulerian ghost nodes are advanced in time in case some ghost node
uncovered by the Lagrangian mesh.

5. MODIFYING THE ORIGINAL GHOST FLUID METHOD

At this point we pause to consider the implications of the last section, in relation to [1:
Consider a contact discontinuity in two-phase compressible flow where the pressure
normal velocity are continuous, while the entropy and tangential velocities are discont
uous. At the contact discontinuity, the discontinuous variables are multivalued and [:
recommends using one-sided extrapolation into ghost cells to capture the interface va
on each side. In [11], the continuous variables are captured using the values already de
at each node; i.e., pressure and normal velocity are copied from the real fluid into the gl
fluid in a node by node fashion. This is in contrast to the method of the last section wh
one side of the interface (the Eulerian side) determines the interface pressure while the
side of the interface (the Lagrangian side) determines the interface normal velocity.

The interface values of pressure and normal velocity need to be determined using s
sort of interpolation technique and noting that these variables are continuous but may po
kinks due to differing equations of state across the interface. Copying these variables
the ghost cells node by node, as proposed in [11], corresponds to one choice of interpola
Using the fluid on one side of the interface to determine the interface pressure and the f
on the other side of the interface to determine the interface velocity, as discussed in the
section, corresponds to another choice. Different interpolation techniques I€x@d\t0)
differences in the interface values of pressure and normal velocity, which vanish as the i
is refined, guaranteeing convergence as dictated by the Rankine—Hugoniot jump co
tions.

At this point, it is not clear exactly which interpolation technique should be used, and t
answer is most likely problem related. For smooth well-behaved problems with commen
rate equations of state, the method proposed in [11] is probably superior, while the met
proposed in the last section is most likely superior when one fluid is very stiff compared
the other.

For example, consider interactions between water and air as discussed in [11] where
air is treated as a gamma law gas and the water is treated with a stiff Tait equation of s
Since the technique in [11] gives equal weighting to the values of the pressure and nor
velocity on both sides of the interface, any kinks in these values will be smeared out to sc
extent, causing small erros in the captured interface values of these variables. Small e
in the normal velocity of the water create small density errors when updating the equat
for conservation of mass (the firstline in Eq. (1)). In turn, these small density errors can I
to large spurious pressure oscillations in the water, since the Tait equation of state is ¢
While small errors in the velocity of the air cause the same small density errors, these f
little effect on the gas, since the gamma law gas equation of state is rather robust (i.e.,
stiff). Again, since the Tait equation of state is rather stiff, one can expect large variation:
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the pressure of the water near the interface, which in turn can lead to poor predictions of
interface pressure. While these errors in the interface pressure have a relatively small
on the denser water, they can have a rather large effect on the less dense gas. Conve
since the gamma law gas equation of state is rather robust, the gas pressure tends
smooth near the interface and is therefore a good candidate for the interface pressure

The aforementioned difficulties can be removed in large part by using the water
determine the interface velocity and the air to determine the interface pressure to proc
a more robust version of the original ghost fluid method proposed in [11]. When updat
the stiffer fluid (in this case the Tait equation of state water), pressure is still copied o
node by node in the ghost region while the total velocity and the entropy are extrapolz
into the ghost cells. When updating the fluid with the more robust equation of state (in't
case the gamma-law gas air), the normal velocity is still copied over node by node in
ghost region while the pressure and the entropy are extrapolated into the ghost cells.
procedure was first used in [5] on an interface separating incompressible and compres
flow. There, the compressible normal velocity is a poor choice for the interface veloci
and the errors this induces into the incompressible velocity field can cause large jumpg
the incompressible pressure as this pressure forces the velocity field to be divergence

Numerical results have shown that this new method behaves in a fashion similar to
original method in [11], except for the increased interface dissipation, which leads to gre:
stability. To illustrate this, examples 5 and 6 from [11] are reexamined here, noting tl
the stiffness in example 6 required some tampering of the high-order numerical metho
increase stability (see [11]). Figures 1 and 3 show the results obtained with this new rol
method using third-order ENO-LLF and third-order TVD Runge—Kutta [23] without th
scheme tampering required with the original scheme.

In example 5 of [11], an interface separates gas on the left from water on the right. Si
wall boundary conditions are enforced on both sides of the domain. Initially, a right-goi
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FIG. 2. Gamma law gasq < 5) and waterX > 5), with 100 grid cells.

shock wave is located in the gas and a left-going shock wave is located in the water. Tt
shock waves propagate toward the interface, producing a complex wave interaction
Fig. 1, one can see reflected shock waves traveling outwardnedr andx = 8. Figure 2
shows the same calculation with 100 grid cells as opposed to the 500 grid cells used in Fi
This illustrates the robustness of this new scheme on a coarse grid, especially conside
that the scheme in [11] produces spurious cavitation, which leads to failure of the numer
method on this same coarse grid.

In example 6 of [11], interfaces separate gas on the outside of the domain from we
on the inside of the domain. A solid wall boundary is enforced on the left and an outflc
boundary condition is enforced on the right. Initially, all the fluids are moving to the rigt
at 500 m/s, causing a rarefaction wave to start at the solid wall on the left. This rarefact
wave propagates to the right, slowing down the fluids. Note that it is much easier to sl
down the less dense gas as opposed to the denser water. Figure 3 shows the steep pr
profile that forms in the water in an attempt to slow it down. One of the difficulties in [11
was a nonphysical pressure overshoot in the water near the interface on the left. Figu
shows that this new numerical method removes the overshoot and produces a mono
pressure profile near the interface. Figure 4 shows the same calculation with 100 grid
as opposed to the 400 grid cells used in Fig. 3. This again illustrates the robustnes
this new scheme on a coarse grid, especially considering that the scheme in [11] prod
spurious cavitation, which leads to failure of the humerical method on this same cos
grid.

6. EXAMPLES

Since both second- and third-order TVD Runge—Kutta schemes [22] can be written ¢
convex combination of simple Euler steps (see [14, 22)), it is straightforward to general
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the first-order time discretization discussed so far in this paper to third-order TVD Runc
Kutta, which is the scheme used in the numerical examples. Mass, momentum, and en
are averaged on the Eulerian mesh using ghost cell values where necessary, while pos
velocity, and internal energy are averaged on the Lagrangian mesh.
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Adaptive time stepping is used in which the overall time step is the minimum of tt
Eulerian mesh and Lagrangian mesh time steps; i.e.,

At = 0.5min(AtE, Ath), (13)

where we have chosen a CFL restriction of 0.5.

The Lagrangian artificial viscosity was applied with= 1 andc, = 1 as recommended
in [9].

Note that high-resolution methods (e.qg., third-order-accurate ENO for the Euler equati
and third-order-accurate Runge—Kutta for time discretization) are used in the numer
examples. Even though these schemes degrade to first-order accuracy near discontinu
such as shock waves, the lower numerical truncation error gives better results in smc
regions of the flow. In general, the numerical results tend to be first-order accurate
guantities such as the location of the Eulerian/Lagrangian interface.

6.1. Example 1

In this example we compute solutions to Test B, Test C, and the two cases of Test D
were first proposed and solved in [15] and later solved in [11] using the fully Eulerian versi
of the ghost fluid method for two-phase flows. In Test B a shock wave impinges upon
interface producing a transmitted shock wave and a reflected rarefaction wave, while in”
C the same shock wave produces both transmitted and reflected shock waves. The two
of Test D are similar to Test B and Test C except for having a stronger initial shock wav

All tests are computed a@[0 m, 1 m] domain with the interface located in the center of
the domain ak = 0.5 m. A fixed Eulerian mesh initially containing 200 grid points is usec
on the left-hand side of the interface, while a moving Lagrangian mesh containing 200 ¢
points is used on the right-hand side of the interface. Note that the exact solutions for den
velocity, and pressure are displayed by a solid line in the figures for the sake of comparis

Three fluids are used in the study and each initially starts withO m/s andp = 1 x
10° Pa. Fluid 1 hay = 1.4 andp = 1 kg/n?, fluid 2 hasy = 1.67 andp = 0.1379 kg/n?,
and fluid 3 hag’ = 1.249 andp = 3.1538 kg/n3.

6.1.1. Test B. In Test B, fluid 1 is on the left and fluid 2 is on the right. A right-going
shock wave is originally located at= 0.05 m with a post-shock state pf= 1.3333 kg/n,

p = 1.5 x 10° Pa, andu = 0.3535/1CF m/s. Figure 5 shows the computed solution at &
final time of 0.0012 s. There is a small (barely noticeable) glitch in densityxneaf.2
due to start-up errors that are generated when the exact initial shock profile is resolve
the shock-capturing scheme.

Figure 6 shows the results with fluid 2 on the left and fluid 1 on the right with a lef
going shock wave initially located at= 0.95 m (of course the post-shock velocity is then
u = —0.3535/10° m/s. Note that the start-up errors in density near 0.8 are significantly
worse for the Lagrangian scheme. Also note that there are some low-amplitude pres
and velocity waves near the interface. These low-amplitude waves seem to be relate
start-up errors and are caused by the changes in the numerical shock profile as the s
wave moves from one grid to the other, especially since different numerical schemes
used on the different grids. In general, these low-amplitude waves seem to be significa
worse for shocks crossing from the Lagrangian grid to the Eulerian grid than they are
shocks crossing from the Eulerian grid to the Lagrangian grid. This is fortuitous since strc
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FIG. 5. Test B: A shock wave propagates from the Eulerian grid (left) towards the Lagrangian grid (rigt
producing both reflected and transmitted waves when it hits the multimaterial interface in between the grids.

shocks usually form in highly deformable reactive materials that are best modeled witt
Eulerian scheme, and one is interested in the effect these shocks have on inert materials
strengths that are best modeled with a Lagrangian scheme; i.e., in the physical probler
interest the strongest shocks tend to travel from the Eulerian grid to the Lagrangian gri

6.1.2. Test D, case 1.The first case of Test D is similar to Test B except that the shoc
strength is increased using a post-shock stape-6f4.3333 kg/nf, p = 1.5 x 10° Pa, and
u = 3.2817%/ 1 m/s. The results for the right-going shock are plotted in Fig. 7 at a fin:
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FIG. 6. Test B: A shock wave propagates from the Lagrangian grid (right) toward the Eulerian grid (le
producing both reflected and transmitted waves when it hits the multimaterial interface.
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FIG.7. TestD, case 1: similar to test B, except a stronger shock wave propagates from the Eulerian grid (|
toward the Lagrangian grid (right) impinging upon the interface.

time of 0.0005 s. Note that the errors in all variables near0.2 are start-up errors. Note
too that there are small “overheating” errors on the left-hand side of the interface.

6.1.3. Test C. Test C is similar to Test B except that fluid 2 is replaced with fluid 3. The
results for the right-going shock are plotted in Fig. 8 at a final time of 0.0017 s. While tl
start-up errors are negligible, the numerical method seems to have some difficulty v
the reflected shock wave. Although the reflected shock wave is in the correct spatial locat
there are low-amplitude waves in pressure and velocity to the right of this wave.
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FIG. 8. Test C: similar to test B, except a different material is used on the Lagrangian grid to the right of t
interface. The initial shock wave is again moving from left to right.
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FIG.9. TestD, case 2: similar to test C, except a stronger shock wave propagates from the Eulerian grid (
toward the Lagrangian grid (right) impinging upon the interface.

6.1.4. Test D, case 2.The second case of Test D is similar to the first case except fluid
is replaced with fluid 3. The results for the right-going shock are plotted in Fig. 9 at a fir
time of 0.0007 s. The errors near= 0.3 andx = 0.7 are start-up errors, while the errors
in density to the right of the interface are overheating errors. To illustrate the behavior
the scheme under grid refinement, Fig. 10 shows the computed results under one lev
grid refinement. Note that the overheating errors improve i_theorm but not in the. >
norm.
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FIG. 10. Test D, case 2: after one level of grid refinement.
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FIG.11. Test C with material strength in the Lagrangian fluid (right). The material strength is balanced at t
interface by the jump in pressure producing a continuous normal stress. The solid line shows the exact soluti
this problem without material strength.

6.2. Example 2

In this example, we repeat the right-going shock case from Test C of example 1, exc
that material strength is added to the material on the right usiag2.5 x 10° N/m. The
computed results are shown in Fig. 11 at a final time of 0.0017 s. For comparison, the e
solution for Test Gvithoutmaterial strength is also shown in the figure. Note that there |
a jump in pressure at the interface. The higher pressure in the fluid on the left is nee
to balance the material strength expansion force of the compressed material on the |
and produce a continuous normal stress across the interface. To show the behavior o
computed solution under grid refinement, Fig. 12 shows the computed results under
level of grid refinement.

6.3. Example 3

Here we consider Test C in two spatial dimensions. Consider a rectangular domain of
[0, 1] x [0, 0.25] with initial conditions for Test C specified in tixadirection and constant
initial data in they direction. The interface is at = 0.5 m and the initial 100< 50 grid
point Eulerian mesh is to the left of the interface while the X080 grid point Lagrangian
mesh is to the right of the interface. While the left and right boundaries of the computatiol
domain are unaffected, the top and bottom boundaries need to have boundary condi
specified. Constant extrapolation of all variables is used to fill fictitious ghost cells on t
top and bottom of the Eulerian mesh, whereas the top and bottom of the Lagrangian n
are treated with a fixed velocity boundary condition that forces the edge velocity to be eq
to the velocity of the closest nonedge node. For example, the velocityngbg the top of
the Lagrangian mesh is set equal to the velocity,at & 1), while the velocity ati(, 1) on
the bottom of the Lagrangian mesh is set equal to the velocity 2j.(

Figure 13 shows the pressure at a final time of 0.0017 s. One can see that the solution -
one dimensional as it should. This is an important test, since many Lagrangian calculati



EULERIAN AND LAGRANGIAN COUPLING 219

deraity valooity

[ 1=20|
a.8
100t
- ]
! ao |
a.s - - RS
T S— aol
a
=5 40 -
= =o |
Ll - o .
o o.2 o.4 o.a o.a o o.2 o.a o.a o.8 ¥

levelast 2 10" pressurs

a0 ND

Néa
I

a
-
T

S S

o o.=2 o.4 o.6 o.8 o o.2 o.4 o.8 o.8

FIG. 12. Test C with material strength in the Lagrangian fluid (right) after one level of grid refinement.

break down and become multidimensional (although Eulerian calculations tend to stay
dimensional). Furthermore, this test shows that our interface treatment allows the calcule
to stay one dimensional as well. Figure 14 shows a side view of the same calculation.
the most part, the data in thedirection are uniform and one can only see the edge of th
grid in this side view. Note that the exact solutions for density, velocity, and pressure

displayed by a solid line in the figures for the sake of comparison.

x 10"
Prossure

FIG. 13. Test C in two spatial dimensions: A shock wave propagates from the Eulerian grid (left) toward t
Lagrangian grid (right) producing both reflected and transmitted waves when it hits the multimaterial interfac
between the grids.
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FIG. 14. Test C in two spatial dimensions (side view).

6.4. Example 4

Consider a rectangular domain of size 10 x [0, 0.75] divided into three regions by
the two linesy = 0.25 andy = 0.5. The regions withy < 0.25 andy > 0.5 are modeled
with separate Lagrangian meshes and filled with fluid 3 with added material strength
by k = 2.5 x 10° N/m. The region in between the two Lagrangian meshes is modeled wi
an Eulerian mesh and filled with fluid 1. Similar to Test D, fluid 1 contains a right-goin
shock wave initially located at = 0.05 m with a post-shock state pf= 4.3333 kg/ni,

p = 1.5 x 10° Pa, andu = 3.2817%/10° m/s. The Lagrangian mesh initially located in the
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FIG. 15. Interface location at = 0, 0.0002 0.0004, and (006 s.
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FIG. 16. Interface location att = 0.0004 s for three different grids.

region defined by < 0.25 has a fixed zero-velocity boundary condition applied to the lef
right, and bottom edges while the other Lagrangian mesh has the same boundary conc
applied to the left, right, and top edges. The post-shock state is used to apply a fixed in
boundary condition to the left-hand side of the Eulerian mesh while constant extrapolat
is applied to all variables on the right-hand side of the Eulerian mesh.

The calculation is carried out using an initial Eulerian grid of 2005 grid points
and Lagrangian grids of 100 25 grid points each. Figure 15 shows the location of the

velocity field

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIG. 17. Velocity field att = 0.0004 s.
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FIG. 18. \Velocity field att = 0.0006 s.

Eulerian/Lagrangian interface at timés= 0, 0.0002 0.0004, and 0.0006 s. Figure 16
shows the interface location ait= 0.0004 s on Eulerian grids of 40 10, 80x 20, and
160 x 40 grid points with corresponding Lagrangian grids of the same size. Figures 17 ¢
18 show the velocity field at = 0.0004 andt = 0.0006 s respectively. To illustrate the
effect of material strength, Figs. 19 and 20 show the interface location and the velocity fi
att = 0.0004 s for the same calculation without material strength, i.e., kvithO.
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FIG. 19. Interface location at = 0.0004 s.
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FIG. 20. Velocity field att = 0.0004 s.

7. CONCLUSION

We have developed a novel method for coupling an Eulerian fluid model to a Lagrang
solid model and shown that it performs well on a number of test cases. While this paper ir
els the solid material using the Lagrangian formulations from [6, 8, 9], this is not a limitatic
of the interface coupling method proposed in this paper. For example, Ref. [1] successf
uses the method first proposed in this paper with a highly sophisticated Lagrangian mat
model. In general, any Lagrangian formulation could be employed without significant mc
ification of the interface coupling method. This is important since both the literature a
the commercial world of Lagrangian codes contain a wide variety of Lagrangian mod
(elastic, plastic, etc.) for materials that undergo all manner of deformation and failure.

The interface coupling techniques developed here allowed us to more accurately t
coupling with stiff materials. Two rather difficult examples from [11] were redone hel
with superior results. Moreover, they were computed on a 4-5 times coarser mesh witt
jepordizing stability.
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