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We propose a numerical method for modeling multimaterial flows where the
domain is decomposed into separate Eulerian and Lagrangian subdomains. That is,
the equations are written in Eulerian form in one subdomain and in Lagrangian form
in the other subdomain. This is of interest, for example, when considering the effect
of underwater explosions on the hull of a ship or the impact of a low speed projectile
on a soft explosive target. On the one hand, high-speed fluid flows are traditionally
modeled by applying shock-capturing schemes to the compressible Euler equations
to avoid problems associated with tangling of a Lagrangian mesh. On the other
hand, solid dynamics calculations are traditionally carried out using Lagrangian
numerical methods to avoid problems associated with numerical smearing in Eulerian
calculations. We use the ghost fluid method to create accurate discretizations across
the Eulerian/Lagrangian interface. The numerical method is presented in both one
and two spatial dimensions; three-dimensional extensions (to the interface coupling
method) are straightforward.c© 2002 Elsevier Science

1. INTRODUCTION

Solid/fluid interaction problems are still rather difficult to solve with modern computa-
tional methods. In general, there are three classical approaches to such problems: treat both
the solid and the fluid with Eulerian numerical methods, treat the fluid with an Eulerian
numerical method and the solid with a Lagrangian numerical method, or treat both the solid
and the fluid with Lagrangian numerical methods.
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Certain fluids, e.g., high-speed gas flows with strong shocks and large deformations,
are very difficult to solve for with Lagrangian numerical methods. Lagrangian numerical
methods use artificial viscosity to smear out numerical shock profiles over a number of
zones to reduce post-shock oscillations or ringing. Thus one has to choose the form for
the artificial viscosity, which can be both problem and material dependent. In addition,
Lagrangian numerical methods have difficulties treating flows with large deformations,
since this causes large deformations of the mesh and subsequent large numerical errors that
can only be removed with complicated remeshing and/or mesh generation procedures that
tend to be low-order accurate. In particular, flows with vorticity cause the mesh to tangle and
sometimes invert, in which case the calculation needs to be stopped. Eulerian numerical
methods intrinsically avoid these mesh associated problems, since they use a stationary
mesh. Furthermore, Eulerian shock-capturing schemes capture shocks in a straightforward
way using conservation and robust limiters, eliminating the need for problem-dependent
artificial viscosity formulations altogether. This allows shocks to be modeled with as few as
one grid cell (without oscillations), whereas Lagrangian numerical methods usually suffer
from some amount of post-shock oscillations until the shock is spread out over about six
grid cells; see, e.g., [3, 4].

While Eulerian numerical methods are superior for high-speed gas flows, they may
perform poorly for many solid dynamics calculations. Since Eulerian numerical methods
capturethe properties of a material, they are not very accurate or robust when tracking
material properties that are important for modeling time history variables. Because of this,
Eulerian numerical methods do not give accurate results when dealing with material re-
sponse to loading and damage. In contrast, Lagrangian numerical methods are extremely
accurate and well tested in this area.

At this point, it is obvious that it is preferable to use Eulerian numerical methods on the
fluid and Lagrangian numerical methods on the solid. It remains to address exactly how
these two calculations can be coupled together to model solid/fluid interactions. There are
essentially two techniques for treating this solid/fluid interface. One technique is to smear
out the nature of the numerical approximations using a Lagrangian numerical method in the
solid and an Eulerian numerical method in the gas with some “mushy” region in between
where the grid moves with an intermediate speed in between that of the Lagrangian mesh and
the stationary Eulerian mesh. That is, the grid speed is smoothly varying in between these
two regions. This is essentially the idea behind the arbitrary Lagrangian–Eulerian (ALE)
numerical algorithm; see, e.g., [3]. The problem here is that these variable-speed meshes
are not well studied and the numerical algorithms employed here tend to be low-order
accurate and sometimes suspect. The other technique for treating the solid/fluid interface
is to keep the mesh representation sharp so that the Eulerian and Lagrangian meshes are in
direct contact. The problem with this method is that the Lagrangian mesh moves, causing
Eulerian mesh points to appear and disappear. In addition, the Eulerian cells tend to have
irregular shapes, sometimes referred to as cut cells. These cut cells can lead to numerical
errors and stiff time-step restrictions; see, e.g., [3] and the references therein, specifically
[13], [19], and [18] which discuss the PISCES, CEL, and PELE codes respectively.

We prefer the second approach for treatment of the solid/fluid interface. That is, we
keep the Lagrangian and Eulerian meshes in direct contact to avoid special methods for an
arbitrary speed mesh. In our approach, problems with cut cells are avoided by the use of
ghost cells for the Eulerian mesh. These ghost cells are covered (or partially covered) by the
Lagrangian mesh, but they are used in the Eulerian finite difference scheme to circumvent
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small time step restrictions. These ghost cells are defined in a way consistent with the
ghost fluid method [11] so that the interface boundary conditions or jump conditions are
properly captured. This method also avoids the blending problems associated with covering
and uncovering of grid points since covered real grid nodes are treated as ghost nodes and
uncovered ghost nodes are treated as real grid nodes. Our approach is novel in that the
numerical treatment of the solid/gas interface does not compromise the solution techniques
for the solid or the fluid at the interface. That is, once the ghost cell values are specified,
a standard Eulerian code can be used to advance the fluid (and its ghost nodes) in time.
Likewise, once the Lagrangian boundary conditions are specified, a standard Lagrangian
code can be used to advance the Lagrangian mesh in time.

In this paper, our focus is on the interaction between materials with a compressible
nature. If one is interested, for example, in treating the solid as a rigid body or the fluid
as incompressible, then nontrivial modifications may be needed for both efficiency and
accuracy. Moreover, in these and other cases, one should also consult the available literature.
For example, [24] couples an elastic solid to a Stokes fluid (see [16] as well).

Sections 2 and 3 discuss the Euler and Lagrange equations respectively, and the novel
method for coupling them together is discussed in Section 4. Section 5 shows how this
new method can be used on stiff fluid/fluid interfaces to significantly improve the results
obtained with the ghost fluid method in [11]. Finally, Section 6 presents the results obtained
from the numerical experiments in one and two spatial dimensions.

2. EULER EQUATIONS

The Euler equations for two-dimensional compressible flow are
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wheret is time,x andy are the spatial dimensions,ρ is the density,u andv are the velocities,
E is the total energy per unit volume, andp is the pressure. The total energy is the sum of
the internal energy and the kinetic energy,

E = ρe+ ρ(u
2+ v2)

2
, (2)

wheree is the internal energy per unit mass. The pressure can be written as a function
of density and internal energy,p = p(ρ, e). For the sake of simplicity only a gamma law
gas,p = (γ − 1)ρe, is considered in this paper. The one-dimensional Euler equations are
obtained by settingv = 0. These equations are discretized using third-order-accurate ENO
methods. See [12, 23] for more details.

On the Eulerian mesh, the convective time step restriction is given by

1t

( |u| + c

1x

)
≤ 1 (3)
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in one spatial dimension and by

1t

( |u| + c

1x
+ |v| + c

1y

)
≤ 1 (4)

in two spatial dimensions wherec = √γ p/ρ is the speed of sound. Note that1t is chosen
so that Eq. (3) (or (4)) is valid at every grid node of the Eulerian mesh.

3. LAGRANGE EQUATIONS

The Lagrange equations are written in nonconservative form with position, velocity,
and internal energy as the independent variables. Since the equations are quite different in
one, two, and three spatial dimensions we address the one- and two-dimensional equations
separately throughout this paper. Our two-dimensional numerical method is essentially the
method proposed in [6, 8, 9] with only minor modifications. In [6], the authors constructed a
Lagrangian numerical method that can treat arbitrary forces in a simple straightforward fash-
ion. In [8], the authors showed how subzonal pressures can be used to avoid mesh tangling.
And in [9], the authors presented an edge-centered artificial viscosity. Our one-dimensional
numerical method is quite standard and can be seen as a straightforward simplification of
the two-dimensional numerical method from [6, 8, 9] to a single spatial dimension. Three-
dimensional Lagrangian methods are not discussed this paper, but the interested reader is
referred to [7], which is a three-dimensional extension of the method proposed in [6, 8, 9].
The interested reader is also referred to [17] and [10].

3.1. One Spatial Dimension

In one spatial dimension the independent variables arex, u, ande. Both x andu are
defined at the grid nodes whilee is defined at the cell centers located midway between
the grid nodes. Each cell or zone is split into two subzones based on the midpoint of each
cell. To initialize the calculation, the mass of each zone,Mz, is determined, and then the
subzonal masses,mz, are defined as half the zonal mass. The nodal mass,M p, is defined
as the sum of the neighboring subzonal masses. The nodal, zonal, and subzonal masses all
remain fixed throughout the calculation.

Each time step, the location of each grid node is updated according to

xn+1− xn

1t
= un, (5)

where1t is the size of the time step. The velocity at each node is updated using

un+1− un

1t
= Fn

M p
, (6)

whereFn is the net force on the grid node. And the internal energy in each zone is updated
with

en+1− en

1t
= Hn

Mz
, (7)
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whereHn is the heating rate of the zone. One can apply either force or velocity boundary
conditions to the grid nodes on the boundary. Velocity boundary conditions are enforced
by simply setting the velocity of a boundary node to the desired boundary velocity instead
of solving Eq. (6). Force boundary conditions are applied by adding the boundary force to
the net nodal forceFn in Eq. (6).

The density of each subzone is determined by dividing the subzonal mass by the subzonal
length. Then the subzonal pressure is defined based on the subzonal density and the zonal
internal energy. For example, in the case of a gamma law gas,p = (γ − 1)ρe. In one
spatial dimension, each zone has two subzonal pressures that are identical to each other,
implying that only a zonal pressure need be defined. However, in multiple dimensions, the
subzonal pressures are not equal and help to avoid mesh tangling [8]. For this reason, we
use subzonal pressures in the one-dimensional exposition. Each subzonal pressure provides
a contribution to the net force on the adjacent grid node as well as a contribution to the
heating rate of the zone that contains it. If the adjacent node is to the left of the subzone, the
contribution to the nodal force is−p and the contribution to the zone heating rate ispu,
whereu is the velocity of the grid node. Otherwise, if the adjacent node is to the right of the
subzone, the contribution to the nodal force isp and the contribution to the zone heating
rate is−pu.

An artificial viscosity,Q, is computed in each zone and is used to augment the net nodal
force of the two adjacent grid nodes as well as the heating rate of the zone. The contribution to
the net nodal force of the node on the left is−Q, while the contribution to the net nodal force
of the node on the right isQ. The contribution to the zone heating rate isQui − Qui+1,
whereui and ui+1 are the velocities of the left and right nodes respectively. Artificial
viscosity is only applied when the zone is under compression, soQ is set identifically to
zero if1u = ui+1− ui ≥ 0. Otherwise.

Q = (1− ψ)(c1ρc|1u| + c2ρ(1u)2), (8)

whereρ is the density of the zone determined by dividing the zonal mass by the length
of the zone,c is the zonal sound speed determined using the density and internal energy
of the zone,c1 andc2 are constants used to set the magnitude of the linear and quadratic
components of the artificial viscosity respectively, andψ is used to smoothly switch the
artificial viscosity on and off.ψ is defined as

ψ = max

(
0,min

(
r− + r+

2
, 2r−, 2r+, 1

))
, (9)

wherer− = u−x /ux andr+ = u+x /ux. The spatial derivative of the velocity,ux, in each zone
is defined as1u over the length of the zone.u−x andu+x are the derivatives in the zone to the
left and to the right of the current zone respectively. If either the zone to the left or the zone
to the right is undefined because the current zone lies on a boundary, then the corresponding
value ofr is set identically equal to 1.

Material strength is applied by putting springs in each zone to connect the neighboring
nodes. Each zone is assigned a rest length,Lo, and restoring forces occur when a zone’s
length, L, is not equal to its rest length. The restoring force is simplyS= −k( L

Lo
− 1)

wherek ≥ 0 is some measure of the stiffness of the material. This restoring force makes
contributions of−S to the net nodal force of the node on the left,S to the net nodal force
of the node on the right, andSui − Sui+1 to the zone heating rate.
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For the one-dimensional Lagrangian mesh,

1t

(
ĉ

L

)
≤ 1 (10)

is enforced in every zone wherêc = √γ p̂/ρ is the effective speed of sound using the
effective pressurêp = p+ Q+ |S|, which includes the effects of artificial viscosity and
material strength. Note that the magnitude ofS is used asS can be negative, unlikeQ,
which is always positive.

3.2. Two Spatial Dimensions

In two spatial dimensions the independent variables areX = 〈x, y〉, V = 〈u, v〉, and
e. Both X andV are defined at the grid nodes which are connected in same fashion as
an Eulerian grid producing quadrilateral zones. Each quadrilateral zone is split into four
subzones by connecting the midpoints of opposite edges of the zone.e is defined at the zone
center, which is located at the intersection of the four subzones and can be computed by
averaging the four nodes that make up the quadrilateral zone. To initialize the calculation,
the mass of each zone,Mz, is determined, and then the subzonal masses,mz, are defined
as one-fourth the zonal mass. The nodal mass,M p, is defined as the sum of the (at most
four) neighboring subzonal masses. Once again, the nodal, zonal, and subzonal masses
all remain fixed throughout the calculation. The independent variables are updated with
Eqs. (5), (6), and (7) replacingx, u, andFn with X, V, andF respectively. Either force or
velocity boundary conditions are applied to the grid nodes on the boundary.

The density of each subzone is determined by dividing the subzonal mass by the subzonal
area. Then the subzonal pressure is defined based on the subzonal density and the zonal
internal energy. Exactly one of the four corners of each subzone corresponds to a grid node.
The two subzonal edges connected to this grid node are used to calculate the contribution
of the subzonal pressure to the net nodal force at this node. For each of these two edges,
this is done by multiplying the subzonal pressure by the length of the edge and by the unit
vector perpendicular to the edge. The dot product of this force with the velocity of the grid
node gives the contribution of the subzonal pressure to the heating rate of the zone.

In each zone, four separate artificial viscosities are computed, i.e., one along each edge.
For a given edge with nodes designated by subscriptsi and i + 1,1V = V i+1− V i and
NV = 1V/|1V| define the velocity jump and the unit vector in the direction of the velocity
jump respectively. LetLs designate the length of the subzonal edge that connects the
midpoint of the zone edge to the center of the zone. LetNs designate the unit normal
to this subzonal edge that points from the node designated byi to the node designated
by i + 1. The scalar artificial viscosity,Q, is multiplied byLs(Ns · NV )NV to obtain the
vector form of the artificial viscosityQ. Artificial viscosity is only applied when the zone
is under compression, soQ is set identically to zero ifNs · NV ≥ 0. Otherwise,−Q is the
contribution to the net nodal force at the node designated byi andQ is the contribution to
the net nodal force at the node designated byi + 1. The contribution to the zone heating
rate isQ · V i −Q · V i+1.

The scalar artificial viscosity,Q, is computed using Eq. (8), replacing1u with 1V and
defining(1V)2 as1V ·1V. The density in Eq. (8) is defined as(2ρiρi+1)/(ρi + ρi+1),
where the nodal densities,ρi andρi+1, are calculated by dividing the nodal mass by the
nodal area, defining the nodal area as the sum of the areas of all the adjacent subzones.



206 RONALD P. FEDKIW

The sound speed in Eq. (8) is defined as min (ci , ci+1), where the nodal sound speeds,ci

andci+1, are computed using the nodal density and the nodal internal energy. The nodal
internal energy is calculated by dividing the total internal energy (not per unit mass) of
the node by the nodal mass. The total internal energy of a node is calculated by summing
the total internal energy of all the neighboring subzones, i.e., summingemz from each
subzone.
ψ is defined using Eq. (9), wherer− = D−V/DV andr+ = D+V/DV. DV is defined

as1V · NV/1X · NX = |1V|/|1X|, where1X = X i+1− X i andNX = 1X/|1X| · D−V
andD+V are defined as1−V · NV/1

−X · NX and1+V · NV/1
+X · NX, respectively, with

1−V = V i − V i−1, 1+V = V i+2− V i+1, 1−X = X i − X i−1, and1+X = X i+2− X i+1.
Once again, if information is missing, then the corresponding value ofr is set identically
equal to 1.

Material strength is applied using forces based on springs. While this trivial material
strength model lacks several desirable features (e.g., it is anisotropic), it is more than
adequate for our purposes. That is, our goal here will be to demonstrate that the interface
coupling method can correctly deal with a discontinuous pressure profile across the interface
as shown in Fig. 11 of example 2. Every edge of every zone is assigned a rest length,Lo,
and every zone is assigned a measure of stiffness,k ≥ 0. A zone admits a restoring force
of S= −k( L

Lo
− 1)NX when the current edge length,L, is not equal to its rest length. For

each zone adjacent to a particular edge, the restoring force makes contributions of−S
to the net nodal force of the node atX i , S to the net nodal force of the node atX i+1,
andS · V i − S · V i+1 to the heating rate of the zone. The straightforward adaption of this
material strength model into the numerical algorithm illustrates the power of the general
force algorithm proposed in [6], which allows one to construct a compatible numerical
algorithm for any set of forces even if they originate only in discrete form.

Equation (10) is used to estimate the time step restriction in two spatial dimensions
as well, although some of the terms are defined differently than they are in one spatial
dimension. The length of a zone,L, is defined as the minimum of all the edge lengths and
the two line segments that connect the midpoints of the opposite edges of the zone. When
definingĉ, the densityρ is defined as the minimum of the four subzonal densities, and the
pressurep is defined as the maximum of the four subzonal pressures. A scalar artificial
viscosity is defined on each zone edge using the two-dimensional equivalent of Eq. (8),
and thenQ is defined as the maximum of the four scalar artificial viscosities in the zone.
Finally, a scalar material strength is determined by dividing the magnitude of the material
strength on each zone edge by the length of the line segment that connects the midpoint of
that edge to the cell center. Then|S| is defined as the maximum of the four scalar material
strengths in a zone.

4. TREATING THE INTERFACE

Boundary conditions need to be imposed on both the Eulerian and Lagrangian grids.
Standard boundary conditions can be applied everywhere except at the internal boundary
where the Lagrangian grid partially overlaps the Eulerian grid. These internal boundary
conditions are the main focus of this paper. First the interface itself needs to be defined,
and since the Lagrangian grid nodes move at the local material velocity, these nodes can
be used to determine the position of the interface. In one spatial dimension, the interface
is simply defined as the single Lagrangian boundary node. In two spatial dimensions, a
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piecewise linear interface is defined by the Lagrangian mesh lines that connect the nodes on
the boundary. This interface divides the Eulerian mesh into separate regions, i.e., a region
populated by real grid nodes and a region populated by ghost nodes. Interface boundary
conditions for the Eulerian mesh are imposed by defining the conserved variables, i.e.,
mass, momentum, and energy, in the ghost nodes. Interface boundary conditions for the
Lagrangian mesh are imposed by either specifying the velocity of the grid nodes on the
Lagrangian boundary or specifying the force applied to that boundary.

Since the interface moves with the local material velocity, it can be treated as a contact
discontinuity for the Eulerian calculation. Then the Rankine–Hugoniot jump conditions
imply that both the pressure and the normal velocity,VN = V · N, are continuous across
the interface while both the entropy and the tangential velocities are completely uncoupled
across the interface [11]. The interface values of the uncoupled variables can be captured
by extrapolating these variables across the interface into the ghost cells. The continuous
or coupled variables can be determined using the values from both the Eulerian and the
Lagrangian mesh.

The interface normal velocity can be determined by applying any number of interpolation
techniques to the Eulerian and Lagrangian mesh values. However, one should be careful
to define the interface normal velocity in a way that is consistent with the material in the
Lagrangian mesh. That is, perturbations to the velocity of the Lagrangian grid nodes can
provide enormous stress due to resistive forces such as material strength. For this reason, to
determine an accurate (and Lagrangian mesh consistent) value of the normal velocity at the
interface, only the Lagrangian mesh is used to determine the interface velocity, similar to
[13, 18, 19]. However, both calculations use this interface normal velocity so that [VN ] = 0
is enforced. The Lagrangian mesh simply uses the computed velocities of its boundary
nodes, while the Eulerian calculation captures this interface normal velocity by assigning
each ghost node the interface normal velocity of the nearest point on the interface.

Since the interface normal velocity is defined as the velocity of the nodes on the
Lagrangian mesh boundary with no contribution from the Eulerian mesh, velocity boundary
conditions cannot be enforced on the Lagrangian mesh at the interface. Instead, force bound-
ary conditions are applied by interpolating the Eulerian grid pressure to this Lagrangian
interface. In this way, the interface pressure is determined using only the Eulerian grid
values, ignoring contributions from the Lagrangian mesh as in [13, 18, 19]. However, both
calculations use this interface pressure so that [p] = 0 is enforced. The interface pressure is
captured by the Eulerian calculation by extrapolating the pressure across the interface into
the ghost cells in a manner similar to the treatment of entropy and tangential velocity. Then
the interface pressure can be interpolated from the Eulerian grid to apply force boundary
conditions to the Lagrangian calculation.

Note that [19] suggests that it might be better to use some average of the Lagrangian and
Eulerian grid values when determining the pressure at the interface. Actually, for Lagrangian
calculations with artificial viscosity and material strength, the jump condition implies that
the net stress in the normal direction, not just the pressure, is continuous. Therefore, this
averaging procedure should take place between the pressure in the gas and the normal
component of the net stress in the normal direction in the solid. However, this can be
dangerous, for example, when the Lagrangian material is in tension since near zero or
negative stress might be calculated at the interface. While Lagrangian methods can be quite
robust under tension, Eulerian methods can suffer a number of problems when treating near
zero or negative pressures associated with rarefied or cavitated fluids.
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4.1. One Spatial Dimension

The one-dimensional interface is defined by the location of the Lagrangian boundary
nodes that are adjacent to grid nodes of the Eulerian mesh. This interface location is used
to construct a signed distance function in order to apply level set methods [20] near the
interface. The level set function is defined at every Eulerian grid node withφ ≤ 0 for real
grid nodes andφ > 0 for ghost nodes. For each Lagrangian interface node,φ is defined
analytically asφ = ±(x − xo), wherexo is the location of the node. The “+” sign is used
if the Lagrangian mesh lies to the right and the “−” sign is used if the Lagrangian mesh lies
to the left. Since this is done for every Lagrangian interface node,φ is multiply defined.
At each Eulerian grid node, a single value ofφ is chosen from the possible candidates by
choosing the candidate with the minimum magnitude.

Before defining values in the Eulerian ghost nodes, a check is performed to see if enough
ghost nodes are present. That is, since the Lagrangian mesh is moving, one needs to ensure
that there is adequate overlap between the two meshes. This is done by examining the values
of φ on the computational boundaries of the Eulerian mesh. If the computational boundary
is an Eulerian ghost node, then the value ofφ gives the distance to the interface and can
be used to estimate the number of ghost nodes that exist between the interface and the
computational boundary. Then the size of the Eulerian mesh can be increased if there are
not enough ghost nodes to successfully apply the numerical method.

The Eulerian ghost nodes are defined by first extrapolatingSandpusing the fast extension
procedure in [2] (based on the fast marching method; see, e.g., [21]), which extends variables
to be constant in the normal direction to first-order accuracy. Thenu at each ghost node is
assigned the value ofu at the nearest Lagrangian boundary node that lies on the interface
between the Eulerian and Lagrangian grids. OnceS, p, andu are determined at each ghost
node, the conserved variables are reassembled.

Force boundary conditions are applied to the Lagrangian interface using the pressure from
the Eulerian grid. First, the pressure at the interface is determined using linear interpolation
form the Eulerian mesh. Note that this linear interpolation requires valid pressure values in
both the real and the ghost nodes. Therefore, the pressure extension step (above) needs to
be carried out before this linear interpolation step. This Eulerian interface pressure makes a
contribution of±p to the net force on the Lagrangian boundary node depending on whether
the Lagrangian mesh lies to the right or to the left of the interface respectively.

With boundary conditions specified on both the Eulerian and Lagrangian mesh, both can
be advanced one Euler step in time. Note that both the Eulerian real grid nodes and a band
of Eulerian ghost nodes are advanced in time. These ghost nodes are advanced in time so
that they have valid values of the conserved variables in case they are uncovered by the
Lagrangian mesh, i.e., in case they become real grid nodes at the end of the time step.

4.2. Two Spatial Dimensions

The two-dimensional interface is defined by the line segments of the Lagrangian mesh
boundary that are adjacent to grid nodes of the Eulerian mesh. This interface is used to
construct a signed distance function defined at every Eulerian grid node withφ ≤ 0 for real
grid nodes andφ > 0 for ghost nodes. For each Eulerian grid node, the distance to each
line segment on the Lagrangian mesh boundary is calculated, and the minimum of these
distances is designated as the magnitude ofφ.
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The sign ofφ is calculated using the closed polygon defined by connecting the Lagrangian
interface to the computational boundary of the Eulerian mesh adjacent to the Eulerian ghost
nodes. The line segments of this polygon are swept through clockwise (or counterclockwise)
to calculate the angle made between the line segment connecting the Eulerian grid node to
the first polygonal endpoint of the line segment and the line segment connecting the Eulerian
grid node to the second polygonal endpoint of the line segment. If these angles sum to 2π

(or−2π ) then the Eulerian grid node is inside the polygon; otherwise these angles sum to
zero and the Eulerian grid node is outside the polygon. The nodes outside the polygon are
real grid nodes withφ ≤ 0, while the nodes inside the polygon are ghost nodes withφ > 0.
If there is more than one polygon, then this procedure can be used to determine whether
a grid node lies within any of the polygons, in which case it is a ghost node withφ > 0.
Points that do not lie in any of the polygons are the real grid nodes withφ ≤ 0.

This method for constructingφ can be optimized by identifying the grid points near the
interface and definingφ only at those points. Then theO(N log N) fast marching method
[21] can be used to defineφ elsewhere. Points near the interface can be identified by finding
the Cartesian grid intersections of each line segment of the polygonal boundary of the
Lagrangian mesh. The complexity of finding these Cartesian grid intersections scales with
the number of grid points on the boundary of the Lagrangian mesh and is independent of
the size of the Eulerian mesh since that mesh is Cartesian.

Once again,φ is examined on the computational boundaries of the Eulerian mesh to
ensure that enough ghost nodes are present, and the size of the Eulerian mesh is increased
when necessary.

The Eulerian ghost nodes are defined by first extrapolatingS, p, andV using the fast
extension procedure in [2]. Then the closest point on the Lagrangian interface is determined
by looping through all the line segments that make up this interface. If the closest point
happens to be on the end of a linear segment, i.e., a Lagrangian grid node, then that velocity
can be designated the closest interface velocity. Otherwise, the closest point is on an edge
connecting two Lagrangian grid nodes, and the closest interface velocity is determined using
linear interpolation between those two nodes. Designating the closest interface velocity by
V I and the extrapolated velocity byVext, the basis free projection method from [11] is used
to combine the normal component of the interface velocity with the tangential component
of the extrapolated velocity, resulting in a ghost cell velocity of

V = (V I · N)N+ Next− (Vext · N)N, (11)

where the unit normal vector is defined locally at the ghost node as

N = ∇φ|∇φ| (12)

and the derivatives are computed with central differencing. In the rare case that the denomi-
nator of Eq. (12) is identically zero, the derivatives are computed with one-sided differencing
instead of central differencing to obtain a nonzero denominator. OnceS, p, andV have been
determined at each ghost node, the conserved variables are reassembled.

Once the Eulerian ghost nodes have valid values for the extrapolated pressure, force
boundary conditions can be determined at the Lagrangian interface. The midpoint of each
linear interface segment is defined as a control point, and bilinear interpolation is used to
determine the Eulerian mesh pressure at each of these control points. Then this pressure
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is multiplied by both the length and the inward pointing normal of the line segment to
determine the magnitude and direction of the Eulerian pressure force on this segment.
Finally, half of this Eulerian pressure force is added to each of the two nodes that make up
this segment.

With boundary conditions specified on both the Eulerian and Lagrangian mesh, both can
be advanced one Euler step in time. Once again, note that both the Eulerian real grid nodes
and a band of Eulerian ghost nodes are advanced in time in case some ghost nodes are
uncovered by the Lagrangian mesh.

5. MODIFYING THE ORIGINAL GHOST FLUID METHOD

At this point we pause to consider the implications of the last section, in relation to [11].
Consider a contact discontinuity in two-phase compressible flow where the pressure and
normal velocity are continuous, while the entropy and tangential velocities are discontin-
uous. At the contact discontinuity, the discontinuous variables are multivalued and [11]
recommends using one-sided extrapolation into ghost cells to capture the interface values
on each side. In [11], the continuous variables are captured using the values already defined
at each node; i.e., pressure and normal velocity are copied from the real fluid into the ghost
fluid in a node by node fashion. This is in contrast to the method of the last section where
one side of the interface (the Eulerian side) determines the interface pressure while the other
side of the interface (the Lagrangian side) determines the interface normal velocity.

The interface values of pressure and normal velocity need to be determined using some
sort of interpolation technique and noting that these variables are continuous but may posses
kinks due to differing equations of state across the interface. Copying these variables into
the ghost cells node by node, as proposed in [11], corresponds to one choice of interpolation.
Using the fluid on one side of the interface to determine the interface pressure and the fluid
on the other side of the interface to determine the interface velocity, as discussed in the last
section, corresponds to another choice. Different interpolation techniques lead toO(4x)
differences in the interface values of pressure and normal velocity, which vanish as the mesh
is refined, guaranteeing convergence as dictated by the Rankine–Hugoniot jump condi-
tions.

At this point, it is not clear exactly which interpolation technique should be used, and the
answer is most likely problem related. For smooth well-behaved problems with commensu-
rate equations of state, the method proposed in [11] is probably superior, while the method
proposed in the last section is most likely superior when one fluid is very stiff compared to
the other.

For example, consider interactions between water and air as discussed in [11] where the
air is treated as a gamma law gas and the water is treated with a stiff Tait equation of state.
Since the technique in [11] gives equal weighting to the values of the pressure and normal
velocity on both sides of the interface, any kinks in these values will be smeared out to some
extent, causing small erros in the captured interface values of these variables. Small errors
in the normal velocity of the water create small density errors when updating the equation
for conservation of mass (the first line in Eq. (1)). In turn, these small density errors can lead
to large spurious pressure oscillations in the water, since the Tait equation of state is stiff.
While small errors in the velocity of the air cause the same small density errors, these have
little effect on the gas, since the gamma law gas equation of state is rather robust (i.e., not
stiff). Again, since the Tait equation of state is rather stiff, one can expect large variations in
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the pressure of the water near the interface, which in turn can lead to poor predictions of the
interface pressure. While these errors in the interface pressure have a relatively small effect
on the denser water, they can have a rather large effect on the less dense gas. Conversely,
since the gamma law gas equation of state is rather robust, the gas pressure tends to be
smooth near the interface and is therefore a good candidate for the interface pressure.

The aforementioned difficulties can be removed in large part by using the water to
determine the interface velocity and the air to determine the interface pressure to produce
a more robust version of the original ghost fluid method proposed in [11]. When updating
the stiffer fluid (in this case the Tait equation of state water), pressure is still copied over
node by node in the ghost region while the total velocity and the entropy are extrapolated
into the ghost cells. When updating the fluid with the more robust equation of state (in this
case the gamma-law gas air), the normal velocity is still copied over node by node in the
ghost region while the pressure and the entropy are extrapolated into the ghost cells. This
procedure was first used in [5] on an interface separating incompressible and compressible
flow. There, the compressible normal velocity is a poor choice for the interface velocity,
and the errors this induces into the incompressible velocity field can cause large jumps in
the incompressible pressure as this pressure forces the velocity field to be divergence free.

Numerical results have shown that this new method behaves in a fashion similar to the
original method in [11], except for the increased interface dissipation, which leads to greater
stability. To illustrate this, examples 5 and 6 from [11] are reexamined here, noting that
the stiffness in example 6 required some tampering of the high-order numerical method to
increase stability (see [11]). Figures 1 and 3 show the results obtained with this new robust
method using third-order ENO-LLF and third-order TVD Runge–Kutta [23] without the
scheme tampering required with the original scheme.

In example 5 of [11], an interface separates gas on the left from water on the right. Solid
wall boundary conditions are enforced on both sides of the domain. Initially, a right-going

FIG. 1. Gamma law gas (x < 5) and water (x > 5), with 500 grid cells.
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FIG. 2. Gamma law gas (x < 5) and water (x > 5), with 100 grid cells.

shock wave is located in the gas and a left-going shock wave is located in the water. These
shock waves propagate toward the interface, producing a complex wave interaction. In
Fig. 1, one can see reflected shock waves traveling outward nearx = 1 andx = 8. Figure 2
shows the same calculation with 100 grid cells as opposed to the 500 grid cells used in Fig. 1.
This illustrates the robustness of this new scheme on a coarse grid, especially considering
that the scheme in [11] produces spurious cavitation, which leads to failure of the numerical
method on this same coarse grid.

In example 6 of [11], interfaces separate gas on the outside of the domain from water
on the inside of the domain. A solid wall boundary is enforced on the left and an outflow
boundary condition is enforced on the right. Initially, all the fluids are moving to the right
at 500 m/s, causing a rarefaction wave to start at the solid wall on the left. This rarefaction
wave propagates to the right, slowing down the fluids. Note that it is much easier to slow
down the less dense gas as opposed to the denser water. Figure 3 shows the steep pressure
profile that forms in the water in an attempt to slow it down. One of the difficulties in [11]
was a nonphysical pressure overshoot in the water near the interface on the left. Figure 1
shows that this new numerical method removes the overshoot and produces a monotonic
pressure profile near the interface. Figure 4 shows the same calculation with 100 grid cells
as opposed to the 400 grid cells used in Fig. 3. This again illustrates the robustness of
this new scheme on a coarse grid, especially considering that the scheme in [11] produces
spurious cavitation, which leads to failure of the numerical method on this same coarse
grid.

6. EXAMPLES

Since both second- and third-order TVD Runge–Kutta schemes [22] can be written as a
convex combination of simple Euler steps (see [14, 22]), it is straightforward to generalize
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FIG. 3. Gamma law gas (x < 4.5; x > 6.5) and water (4.5< x < 6.5), with 400 grid cells.

the first-order time discretization discussed so far in this paper to third-order TVD Runge–
Kutta, which is the scheme used in the numerical examples. Mass, momentum, and energy
are averaged on the Eulerian mesh using ghost cell values where necessary, while position,
velocity, and internal energy are averaged on the Lagrangian mesh.

FIG. 4. Gamma law gas (x < 4.5; x > 6.5) and water (4.5< x < 6.5), with 100 grid cells.
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Adaptive time stepping is used in which the overall time step is the minimum of the
Eulerian mesh and Lagrangian mesh time steps; i.e.,

1t = 0.5 min(1t E,1t L), (13)

where we have chosen a CFL restriction of 0.5.
The Lagrangian artificial viscosity was applied withc1 = 1 andc2 = 1 as recommended

in [9].
Note that high-resolution methods (e.g., third-order-accurate ENO for the Euler equations

and third-order-accurate Runge–Kutta for time discretization) are used in the numerical
examples. Even though these schemes degrade to first-order accuracy near discontinuiuties
such as shock waves, the lower numerical truncation error gives better results in smooth
regions of the flow. In general, the numerical results tend to be first-order accurate in
quantities such as the location of the Eulerian/Lagrangian interface.

6.1. Example 1

In this example we compute solutions to Test B, Test C, and the two cases of Test D that
were first proposed and solved in [15] and later solved in [11] using the fully Eulerian version
of the ghost fluid method for two-phase flows. In Test B a shock wave impinges upon an
interface producing a transmitted shock wave and a reflected rarefaction wave, while in Test
C the same shock wave produces both transmitted and reflected shock waves. The two cases
of Test D are similar to Test B and Test C except for having a stronger initial shock wave.

All tests are computed onα[0 m, 1 m] domain with the interface located in the center of
the domain atx = 0.5 m. A fixed Eulerian mesh initially containing 200 grid points is used
on the left-hand side of the interface, while a moving Lagrangian mesh containing 200 grid
points is used on the right-hand side of the interface. Note that the exact solutions for density,
velocity, and pressure are displayed by a solid line in the figures for the sake of comparison.

Three fluids are used in the study and each initially starts withu = 0 m/s andp = 1×
105 Pa. Fluid 1 hasγ = 1.4 andρ = 1 kg/m3, fluid 2 hasγ = 1.67 andρ = 0.1379 kg/m3,

and fluid 3 hasγ = 1.249 andρ = 3.1538 kg/m3.

6.1.1. Test B. In Test B, fluid 1 is on the left and fluid 2 is on the right. A right-going
shock wave is originally located atx = 0.05 m with a post-shock state ofρ = 1.3333 kg/m3,

ρ = 1.5× 105 Pa, andu = 0.3535
√

105 m/s. Figure 5 shows the computed solution at a
final time of 0.0012 s. There is a small (barely noticeable) glitch in density nearx = 0.2
due to start-up errors that are generated when the exact initial shock profile is resolved by
the shock-capturing scheme.

Figure 6 shows the results with fluid 2 on the left and fluid 1 on the right with a left-
going shock wave initially located atx = 0.95 m (of course the post-shock velocity is then
u = −0.3535

√
105 m/s. Note that the start-up errors in density nearx = 0.8 are significantly

worse for the Lagrangian scheme. Also note that there are some low-amplitude pressure
and velocity waves near the interface. These low-amplitude waves seem to be related to
start-up errors and are caused by the changes in the numerical shock profile as the shock
wave moves from one grid to the other, especially since different numerical schemes are
used on the different grids. In general, these low-amplitude waves seem to be significantly
worse for shocks crossing from the Lagrangian grid to the Eulerian grid than they are for
shocks crossing from the Eulerian grid to the Lagrangian grid. This is fortuitous since strong



EULERIAN AND LAGRANGIAN COUPLING 215

FIG. 5. Test B: A shock wave propagates from the Eulerian grid (left) towards the Lagrangian grid (right)
producing both reflected and transmitted waves when it hits the multimaterial interface in between the grids.

shocks usually form in highly deformable reactive materials that are best modeled with an
Eulerian scheme, and one is interested in the effect these shocks have on inert materials with
strengths that are best modeled with a Lagrangian scheme; i.e., in the physical problems of
interest the strongest shocks tend to travel from the Eulerian grid to the Lagrangian grid.

6.1.2. Test D, case 1.The first case of Test D is similar to Test B except that the shock
strength is increased using a post-shock state ofρ = 4.3333 kg/m3, p = 1.5× 106 Pa, and
u = 3.2817

√
105 m/s. The results for the right-going shock are plotted in Fig. 7 at a final

FIG. 6. Test B: A shock wave propagates from the Lagrangian grid (right) toward the Eulerian grid (left)
producing both reflected and transmitted waves when it hits the multimaterial interface.
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FIG. 7. Test D, case 1: similar to test B, except a stronger shock wave propagates from the Eulerian grid (left)
toward the Lagrangian grid (right) impinging upon the interface.

time of 0.0005 s. Note that the errors in all variables nearx = 0.2 are start-up errors. Note
too that there are small “overheating” errors on the left-hand side of the interface.

6.1.3. Test C. Test C is similar to Test B except that fluid 2 is replaced with fluid 3. The
results for the right-going shock are plotted in Fig. 8 at a final time of 0.0017 s. While the
start-up errors are negligible, the numerical method seems to have some difficulty with
the reflected shock wave. Although the reflected shock wave is in the correct spatial location,
there are low-amplitude waves in pressure and velocity to the right of this wave.

FIG. 8. Test C: similar to test B, except a different material is used on the Lagrangian grid to the right of the
interface. The initial shock wave is again moving from left to right.
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FIG. 9. Test D, case 2: similar to test C, except a stronger shock wave propagates from the Eulerian grid (left)
toward the Lagrangian grid (right) impinging upon the interface.

6.1.4. Test D, case 2.The second case of Test D is similar to the first case except fluid 2
is replaced with fluid 3. The results for the right-going shock are plotted in Fig. 9 at a final
time of 0.0007 s. The errors nearx = 0.3 andx = 0.7 are start-up errors, while the errors
in density to the right of the interface are overheating errors. To illustrate the behavior of
the scheme under grid refinement, Fig. 10 shows the computed results under one level of
grid refinement. Note that the overheating errors improve in theL2 norm but not in theL∞

norm.

FIG. 10. Test D, case 2: after one level of grid refinement.
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FIG. 11. Test C with material strength in the Lagrangian fluid (right). The material strength is balanced at the
interface by the jump in pressure producing a continuous normal stress. The solid line shows the exact solution to
this problem without material strength.

6.2. Example 2

In this example, we repeat the right-going shock case from Test C of example 1, except
that material strength is added to the material on the right usingk = 2.5× 105 N/m. The
computed results are shown in Fig. 11 at a final time of 0.0017 s. For comparison, the exact
solution for Test Cwithoutmaterial strength is also shown in the figure. Note that there is
a jump in pressure at the interface. The higher pressure in the fluid on the left is needed
to balance the material strength expansion force of the compressed material on the right
and produce a continuous normal stress across the interface. To show the behavior of the
computed solution under grid refinement, Fig. 12 shows the computed results under one
level of grid refinement.

6.3. Example 3

Here we consider Test C in two spatial dimensions. Consider a rectangular domain of size
[0, 1]× [0, 0.25] with initial conditions for Test C specified in thex direction and constant
initial data in they direction. The interface is atx = 0.5 m and the initial 100× 50 grid
point Eulerian mesh is to the left of the interface while the 100× 50 grid point Lagrangian
mesh is to the right of the interface. While the left and right boundaries of the computational
domain are unaffected, the top and bottom boundaries need to have boundary conditions
specified. Constant extrapolation of all variables is used to fill fictitious ghost cells on the
top and bottom of the Eulerian mesh, whereas the top and bottom of the Lagrangian mesh
are treated with a fixed velocity boundary condition that forces the edge velocity to be equal
to the velocity of the closest nonedge node. For example, the velocity at (i, n) on the top of
the Lagrangian mesh is set equal to the velocity at (i, n− 1), while the velocity at (i , 1) on
the bottom of the Lagrangian mesh is set equal to the velocity at (i , 2).

Figure 13 shows the pressure at a final time of 0.0017 s. One can see that the solution stays
one dimensional as it should. This is an important test, since many Lagrangian calculations
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FIG. 12. Test C with material strength in the Lagrangian fluid (right) after one level of grid refinement.

break down and become multidimensional (although Eulerian calculations tend to stay one
dimensional). Furthermore, this test shows that our interface treatment allows the calculation
to stay one dimensional as well. Figure 14 shows a side view of the same calculation. For
the most part, the data in they direction are uniform and one can only see the edge of the
grid in this side view. Note that the exact solutions for density, velocity, and pressure are
displayed by a solid line in the figures for the sake of comparison.

FIG. 13. Test C in two spatial dimensions: A shock wave propagates from the Eulerian grid (left) toward the
Lagrangian grid (right) producing both reflected and transmitted waves when it hits the multimaterial interface in
between the grids.
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FIG. 14. Test C in two spatial dimensions (side view).

6.4. Example 4

Consider a rectangular domain of size [0, 1]× [0, 0.75] divided into three regions by
the two linesy = 0.25 andy = 0.5. The regions withy ≤ 0.25 andy ≥ 0.5 are modeled
with separate Lagrangian meshes and filled with fluid 3 with added material strength set
by k = 2.5× 105 N/m. The region in between the two Lagrangian meshes is modeled with
an Eulerian mesh and filled with fluid 1. Similar to Test D, fluid 1 contains a right-going
shock wave initially located atx = 0.05 m with a post-shock state ofρ = 4.3333 kg/m3,
p = 1.5× 106 Pa, andu = 3.2817

√
105 m/s. The Lagrangian mesh initially located in the

FIG. 15. Interface location att = 0, 0.0002, 0.0004, and 0.0006 s.
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FIG. 16. Interface location att = 0.0004 s for three different grids.

region defined byy ≤ 0.25 has a fixed zero-velocity boundary condition applied to the left,
right, and bottom edges while the other Lagrangian mesh has the same boundary condition
applied to the left, right, and top edges. The post-shock state is used to apply a fixed inflow
boundary condition to the left-hand side of the Eulerian mesh while constant extrapolation
is applied to all variables on the right-hand side of the Eulerian mesh.

The calculation is carried out using an initial Eulerian grid of 100× 25 grid points
and Lagrangian grids of 100× 25 grid points each. Figure 15 shows the location of the

FIG. 17. Velocity field att = 0.0004 s.
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FIG. 18. Velocity field att = 0.0006 s.

Eulerian/Lagrangian interface at timest = 0, 0.0002, 0.0004, and 0.0006 s. Figure 16
shows the interface location att = 0.0004 s on Eulerian grids of 40× 10, 80× 20, and
160× 40 grid points with corresponding Lagrangian grids of the same size. Figures 17 and
18 show the velocity field att = 0.0004 andt = 0.0006 s respectively. To illustrate the
effect of material strength, Figs. 19 and 20 show the interface location and the velocity field
at t = 0.0004 s for the same calculation without material strength, i.e., withk = 0.

FIG. 19. Interface location att = 0.0004 s.
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FIG. 20. Velocity field att = 0.0004 s.

7. CONCLUSION

We have developed a novel method for coupling an Eulerian fluid model to a Lagrangian
solid model and shown that it performs well on a number of test cases. While this paper mod-
els the solid material using the Lagrangian formulations from [6, 8, 9], this is not a limitation
of the interface coupling method proposed in this paper. For example, Ref. [1] successfully
uses the method first proposed in this paper with a highly sophisticated Lagrangian material
model. In general, any Lagrangian formulation could be employed without significant mod-
ification of the interface coupling method. This is important since both the literature and
the commercial world of Lagrangian codes contain a wide variety of Lagrangian models
(elastic, plastic, etc.) for materials that undergo all manner of deformation and failure.

The interface coupling techniques developed here allowed us to more accurately treat
coupling with stiff materials. Two rather difficult examples from [11] were redone here
with superior results. Moreover, they were computed on a 4–5 times coarser mesh without
jepordizing stability.
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